Types of Variables, Summary Statistics, and Graphical Displays

Data Science - Fall 2016

Class Survey Data

• Combined for two classes (Data Science & Business Stat)

Types of Variables

- Storage/Computing
 - How is it used in computation?
 - How much efficiency is there in storing the data?
- Analysis
 - How will the data be used for analysis?
 - Categorical, Ordinal, or Numeric
 - Text Analysis
- For the Class Data what type of variable is each one?

Explanatory/Response Variables

- Explanatory (or independent) variables typically precede response variables chronologically. They are often thought of as causal agents (and often erroneously).
- The response (or dependent) variable(s) is/are the outcome that is measured. It is what is thought of as caused by the explanatory variable.
- In some data mining contexts (like cluster analysis), explanatory and response variables are not set or not predetermined.

Hans Rosling Video

- 200 countries, 200 years, 4 minutes
- How many variables were included?
- What types of variables are they?
- Which one(s) is/are the response variable(s)?

Summary Measures - Center

- Center (Location)
 - Mean sensitive to outliers, typical measure
 - Median resistant to outliers
 - Mode not useful for numeric data
- Spread
 - Range very sensitive to outliers
 - IQR used with median
 - Standard Deviation used with mean

Summary Measures - Dispersion/Spread

- Range = Max Min
- IQR
 - Q_1 is the 25^{th} percentile, meaning 25% are less than or equal to this value
 - $-\,Q_3$ is the 75^{th} percentile, meaning 75% are less than or equal to this value
 - $IQR = Q_3 Q_1$
 - The IQR is resistant to outliers (like the median)
- · Standard deviation

Variance

 Average (or unbiased average) of squared deviations of values from the mean (in squared units)

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - x)^{2}}{n - 1}$$

Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Summary Measures – Categorical/Ordinal Data

• To summarize categorical data, use frequency and relative frequency (%)

Gender	Frequency	Relative Frequency (%)
M	14	56% Freq/Total:
F	10	40% 10/25 = 40% or 0.40
Other	1	4%

• To summarize ordinal data, you can ALSO use cumulative frequency and relative frequency

Likelihood of Voting	Frequency	Relative	Frequency (%)	Cum Freq	Cum Rel Freq
Definitely Not	2	4%	All lower	2	4%
Likely Not	12	24%	2+12	14	28%
Likely	16	32%	All lower	30	60%
Definitely	20	40%	14+16	50	100%

Summary Measures – Categorical/Ordinal Data Joint Frequency Distributions

- Used to examine data that is characterized by two variables that are both categorical (or ordinal).
 Numeric variables may be collapsed into ordinal categories and then used in a joint frequency distribution.
- The number of rows and columns corresponds to the number of categories for each variable

Joint Frequency Example

- A company offers 3 extended warranty plans for purchase
- The plans are sold both in the store and online

Extended Warranty Sales							
	1 yr	5 yrs	10 yrs				
In Store	69	60	35				
Online	89	27	11				

Joint Probability Distribution • The joint probability distribution is the probability of being in each cell • It is useful when talking about % of total (sales) Extended Warranty Sales 1 yr 5 yrs 10 yrs TOTAL 0.24 0.21 0.56 In Store 0.12 Online 0.31 0.09 0.04 0.44 TOTAL 0.54 \ 0.30 1.00 0.16

Describing Distributions

- For numeric variables, we summarize the distribution by...(SOCS+IT)
 - Shape (# of modes, skew)
 - Outliers
 - Center (Mean or median)
 - Spread (range for one group, dispersion/spread if comparing groups)
 - Anything Interesting
 - Take-home message

Distribution Shape and Box and Whisker Plot Left-Skewed Symmetric Right-Skewed Q1 45 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Box-and-Whisker Plot Example

- A boxplot is a graphical display of the five number summary (min, Q1, median, Q3, max)
- Below is a Box-and-Whisker plot for the following data:

• This data are right skewed, as the plot depicts

Graphical Summaries

- See Handout
- For each graph identify...
 - The variable(s) being measured
 - The type of variable(s)
 - The type of graph being displayed
 - Summarize what you see on each graph (in one or two sentences)

Summarizing Survey Data

• Let's look together at summarizing student survey data. What variables might we want to compare

23

For Next Class

- Bias & Multivariate Thinking
- See Learning Outcome sheet online
- Do pre-assessment
- Extra Office Hours tonight, 5-7pm, SAC310

24

Population Estimation

- Separate into two groups...
- What is your best guess for the population of the Philippines?
- Record and review these
- This is an example of bias!