-A A +A

ComputingEd

Subscribe to ComputingEd feed ComputingEd
How do people understand computing, and how can we improve that understanding?
Updated: 43 sec ago

The Father Of Mobile Computing Is Not Impressed: The Weight of Redefining the Normal

Fri, 09/22/2017 - 07:00

I have been fortunate to have heard Alan Kay talk on the themes in this interview many times, but either he’s getting better at it or I’m learning enough to understand him better, because this was one of my favorites. (Thanks to Ben Shapiro for sending it to me.)  He ties together Steve Jobs, Neal Postman, and Maria Montessori to explain what we should be doing with education and technology, and critiques the existing technology as so much less than what we ought to be doing.  In the quote below, he critiques Tim Berners-Lee for giving us a World Wide Web which was less than what we already knew how to do.  The last paragraph quoted below is poignant: It’s so hard to fix the technology once it’s established because of “the weight of this redefining of the normal.”

What I understood this time, which I hadn’t heard before, was the trade-off between making technology easier and making people better.  I’ve heard Alan talk about using technology to improve people, to help them learn, to challenge their thinking.  But Alan led the team that invented the desktop user interface — he made computing easier.  Can we have both?  What’s the balance that we need? That’s where Neal Postman and Bertrand Russel come in, as gifted writers who drew us in and then changed our minds. That’s why we need adults who know things to create a culture where children learn 21st century thinking and not oral culture (that’s the Maria Montessori part), and why the goal should be about doing what’s hard — not doing what’s universal, not doing what pre-literate societies were doing.  Alan critiques the iPhone as not much better than the television for learning, when the technology in the iPhone could have made it so much more.

He tosses out another great line near the end of the interview, “How stupid is it, versus how accepted is it?”  How do we get unstuck?  The iPhone was amazing, but how do we roll back the last ten years to say, “Why didn’t we demand better? How do we shuck off the ‘the weight of this redefining of the normal’ in order to move to technology that helps us learn and grow?”

And so, his conception of the World Wide Web was infinitely tinier and weaker and terrible. His thing was simple enough with other unsophisticated people to wind up becoming a de facto standard, which we’re still suffering from. You know, [HTML is] terrible and most people can’t see it.

FC: It was standardized so long ago.

AK: Well, it’s not really standardized because they’re up to HTML 5, and if you’ve done a good thing, you don’t keep on revving it and adding more epicycles onto a bad idea. We call this reinventing the flat tire. In the old days, you would chastise people for reinventing the wheel. Now we beg, “Oh, please, please reinvent the wheel.”At least give us what Engelbart did, for Christ’s sake.

But that’s the world we’re in. We’re in that world, and the more stuff like that world that is in that world, the more the world wants to be that way, because that is the weight of this redefining of the normal.

Source: The Father Of Mobile Computing Is Not Impressed


Tagged: Alan Kay, computing education, educational technology

The challenge of retaining women in computing: The 2016 Taulbee Survey: Supplementary Report on Course-level Enrollment

Mon, 09/18/2017 - 07:00

The Computing Research Association (CRA) has just released a supplement to their 2016 Taulbee Survey report.  They now are collecting individual course data, which gives them more fine-grained numbers about who is entering the major, who is retained until mid-level, and who makes it to the upper-level.  Previously, they mostly just had enrollment and graduation data.  These new data give them new insights.  For example, we are getting more women and URM in computing, but we are not retaining them all.

Except in the introductory course for non-majors, the median percentage of women in courses at each level was either fairly constant or increasing [from previous years]. The most notable increase was in the mid-level course, where the median percentage of women went from 17.4 in 2015 to 20.0 in 2016. The median percentage of women in the upper-level course also increased, from 14.1 to 15.9 percent. We see a slight drop-off from the median percentage of women in the introductory course for majors in 2015 (21.0 percent) to the median percentage of women in the mid-level course in 2016 (20.0 percent), and a somewhat larger drop-off between the median percentage of women in the mid-level course in 2015 (17.4 percent) and the median percentage of women in the upper-level course in 2016 (15.9 percent).  Because the median percentage at each level is for a single representative course, not for all students at that level, some of the differences between levels may be attributable to the specific courses on which the institutions chose to report. Overall, however, this trend of decreasing representation of women at higher course levels is congruent with other data.

Source: The 2016 Taulbee Survey: Supplementary Report on Course-level Enrollment – CRA


Tagged: BPC, computing education, CRA, NCWIT, undergraduate education, women in computing

British girls “logging off” from CS: What’s the real problem?

Fri, 09/15/2017 - 07:00

The BBC reports (in the article linked below) that the “revolution in computing education has stalled.”  The data from England (including the Roehampton Report, discussed in this blog post) do back up that claim — see the quotes at the bottom.

In this post, I’m reflecting on the response from the British Computer Society. “We need to do more with the curriculum to show it’s not just a nerdy boys’ subject. We’ve got to show them it’s about real problems like climate change and improving healthcare.”  There are some interesting assumptions and warrants in these statements.  Do girls avoid CS because they think it’s a boys’ subject, or because it’s not about real problems?  How does the curriculum “show” that it is (or isn’t) a “nerdy boys’ subject”?  If the curriculum emphasized “real problems,” would it no longer be a “nerdy boys’ subject”?  Are these at all connected? Would making CS be like “climate change and improving healthcare” attract more female students?

First, I’d like to know if the girls choosing ICT over CS are actually saying that it’s because CS is “a nerdy boys’ subject,” and if the girls know anything about the curriculum in CS.  In our research, we found that high school students know very little about what actually happens in undergraduate CS, and undergraduate students in CS don’t even know what’s in their next semester’s classes. Changing the curriculum doesn’t do much good if the girls’ decisions are being made without knowing about the curriculum.  The former claim, that CS is perceived by girls as a “nerdy boys’ subject,” is well-supported in the literature.  But is that the main reason why the girls aren’t enrolling?

Do we know that this a curriculum issue at all? The evidence suggests that there are other likely reasons.

  • Maybe it’s not the curriculum’s “problem” focus, but the “learning objective” focus. Do the girls percieve that the point of the course is to become part of the Tech industry as a professional programmer?  Maybe girls are more interested in broadening their potential careers and not limiting their options to IT?  ICT can be used anywhere.  CS might be perceived as being about being a software developer.
  • Are the girls seeing mass media depictions of programming and deciding that it’s not for them?  A 2016 ICER paper by Colleen Lewis, Ruth Anderson, and Ken Yasuhara explored the reasons why students might not feel that they have a good “fit” with CS (see ACM paper link here).  But are those the reasons why women might not even try CS? Maybe they have had experiences with programming and decided that they didn’t fit? Or maybe the decided that syntax errors and unit tests are just tedious and boring?
  • Are the girls seeing mass media depictions of the Tech industry and deciding that they’d rather not be a Googler or work at Uber? They are probably hearing about things like the Damore memo at Google. Whether they think he’s right or not, maybe girls are saying that they just don’t want to bother.
  • Do the girls have more choices, and CS is simply less attractive in comparison?  It may be that girls know that CS is about solving real problems, but they’d rather solve real problems in law, medicine, or business.
  • Do the girls perceive that wages are not rising in the Tech industry?  Or do the girls perceive that they can make more money (perhaps with fewer negative connotations) as a lawyer, doctor, or businessperson?

I have heard from some colleagues in England that the real problem is a lack of teachers.  I can believe that having too few teachers does contribute to the problem, but that raises the same questions at another level.  Why don’t teachers teach computer science?  Is it because they don’t want to be in the position of being “vocational education,” simply preparing software developers?  Or are teachers deciding that they are dis-interested in software development, for themselves or for their students?  Or are the teachers looking at other areas of critical need for teachers and decide that CS is less attractive?

Bottom line is that we know too little, in the UK or in the US (see Generation CS), about what is influencing student and teacher decisions to pursue or to avoid classes in computing. The reality doesn’t matter here — people make decisions based on their perceptions.

In England, entries for the new computer science GCSE, which is supposed to replace ICT, rose modestly from 60,521 in 2016 to 64,159 this year. Girls accounted for just 20% of entries, and the proportion was a tiny bit lower than last year.

ICT entries fell from 84,120 to 73,099, which you would expect as the subject is disappearing from the national curriculum. But it had proved more attractive to girls. Even there, the proportion of female entries fell from 41% to 39%.

Combine the two subjects, and you find that the number studying either subject has fallen by over 7,000 in the past year. Back in 2015 more than 47,000 girls were getting some kind of computing qualification, and that has fallen to about 41,000 – just 30% of the total.

Source: Computer science: Girls logging off – BBC News


Tagged: BPC, computing for all, computing for everyone, enrollment, NCWIT, retention, women in computing

Learning Programming at Scale: Philip Guo’s research

Mon, 09/11/2017 - 07:00

I love these kinds of blog posts.  Philip Guo summarizes the last three years of his research in the post linked below.  I love it because it’s so important and interesting (especially for students trying to understand a field) to get a broad explanation of how a set of papers relate and what they mean.  Blog posts may be our best medium for presenting this kind of overview — books take too long (e.g., I did a book to do an overview of 10-15 years of work, but it may not be worth the effort for a shorter time frame), and few conferences or journals will publish this kind of introspection.

My research over the past three years centers on a term that I coined in 2015 called learning programming at scale. It spans the academic fields of human-computer interaction, online learning, and computing education.

Decades of prior research have worked to improve how computer programming is taught in traditional K-12 and university classrooms, but the vast majority of people around the world—children in low-income areas, working adults with full-time jobs, the fast-growing population of older adults, and millions in developing countries—do not have access to high-quality classroom learning environments. Thus, the central question that drives my research is: How can we better understand the millions of people from diverse backgrounds who are now learning programming online and then design scalable software to support their learning goals? To address this question, I study learners using both quantitative and qualitative research methods and also build new kinds of interactive learning systems.

Source: Learning Programming at Scale | blog@CACM | Communications of the ACM


Tagged: computing education research, computing for all, computing for everyone

Personality Tests Are Fun But Don’t Capture Who You Really Are and Should Not Be Part of Hiring

Fri, 09/08/2017 - 07:00

Annie Murphy Paul has been trying to convince people for years now that personality tests don’t really work — they’re not valid, they’re not reliable, and it’s not clear what they’re measuring.  This issue is important because the Tech industry still believes in tests like these when hiring. (Or so I hear — as a professor, I only know the hiring process from student stories.) They introduce significant bias into hiring. How do we get rid of them?

Twelve years ago, I tried to drive a stake into the heart of the personality-testing industry. Personality tests are neither valid nor reliable, I argued, and we should stop using them — especially for making decisions that affect the course of people’s lives, like workplace hiring and promotion.

But if I thought that my book, The Cult of Personality Testing, would lead to change in the world, I was keenly mistaken. Personality tests appear to be more popular than ever. I say “appear” because — today as when I wrote the book — verifiable numbers on the use of such tests are hard to come by.Personality testing is an industry the way astrology or dream analysis is an industry: slippery, often underground, hard to monitor or measure. There are the personality tests administered to job applicants “to determine if you’re a good fit for the company”; there are the personality tests imposed on people who are already employed, “in order to facilitate teamwork”; there are the personality tests we take voluntarily, in career counseling offices and on self-improvement retreats and in the back pages of magazines (or, increasingly, online).

Source: Personality Tests Are Fun But Don’t Capture Who You Really Are : Shots – Health News : NPR


Tagged: jobs, psychology

Google study on the challenges for rural communities in teaching CS

Mon, 09/04/2017 - 07:00

Google continues their series of reports on the challenges of teaching CS, with a new report on rural and small-town communities in the US.  This is an important part of CS for All, and is a problem internationally.  The Roehampton Report found that rural English schools were less likely to have computing education than urban schools.  How do we avoid creating a computing education divide between urban and rural schools?

This special brief from our Google-Gallup study dives into the opportunities and challenges for rural and small-town communities. Based on nationally representative surveys from 2015-16, we found:

  • Students from rural/small-town schools are just as likely as other students to see CS as important for their future careers, including 86% who believe they may have a job needing computer science.

  • Rural/small-town parents and principals also highly value CS, with 83% of parents and 64% of principals saying that offering CS is just as or more important than required courses.

  • Rural/small-town students are less likely to have access to CS classes and clubs at school compared to suburban students, and their parents are less likely to know of CS opportunities outside of school.

  • Rural/small-town principals are less likely to prioritize CS, compared to large-city or suburban principals.

Source: Google for Education: Computer Science Research


Tagged: #CS4All, #CSforAll, computing for all, computing for everyone, Google

The Role of Emotion in Computing Education, and Computing Education in Primary School: ICER 2017 Recap

Fri, 09/01/2017 - 07:00

I wrote my Blog@CACM post in August about the two ICER 2017 paper awards:

  • Danielsiek et al’s development of a new test of student self-efficacy in algorithms classes;
  • Rich et al.’s trajectories of K-5 CS learning, which constitute an important new set of theories about how young students learn computing.

Rich et al.’s paper is particularly significant to me because it has me re-thinking my beliefs about elementary school computer science. I have expressed significant doubt about teaching computer science in early primary grades — it’s expensive, there are even more teachers to prepare than in secondary schools, and it’s not clear that it does any longterm good. If a third grader learns something about Scratch, will they have learned something that they can use later in high school? Katie Rich presented not just trajectories but Big Ideas. Like Big Ideas for sequential programming include precision and ordering. It’s certainly plausible that a third grader who learns that precision and ordering in programs matters, might still remember that years later. I can believe that Big Ideas might transfer (at least, within computing) over years.

I was struck by a recurring theme of emotion in the papers at ICER 2017. We have certainly had years where cognition has been a critical discussion, or objects, or programming languages, or student’s process. This year, I noticed that many of these papers were thinking about beliefs and feelings.

I find this set of papers interesting for highlight an important research question: What’s the most significant issue influencing student success or withdrawal from computer science? Is it the programming language they use (blocks vs text, anyone?), the kind of error messages they see, the context in which the instruction is situated, or whether they use pair programming? Or is the most significant issue what the students believe about what they’re doing? And maybe all of those other issues (from blocks to pairs) are really just inputs to the function of student belief?

(Be sure to check out Andy Ko’s summary of ICER 2017.)


Tagged: affect, beliefs, computing education research, K12

The Problems with Coding Bootcamps: Allure with little Payoff

Mon, 08/28/2017 - 07:00

Audrey Watters weighs in below on why Coding Bootcamps are failing. She argues that bootcamps aren’t filling a real need, that there really isn’t a huge untapped need for coding skills.

Kyle Thayler and Andy Ko just published an article at ICER 2017 about their analyses of bootcamps.  Kyle has a nice summary as a Medium post (see link here), but I recommend reading the actual ICER paper, too.  Kyle’s summary is balanced about the strengths and weaknesses of coding bootcamps, while I think the results in the ICER paper are much more critical.  This one quote, about the nine months (!) following graduation, was particularly compelling for me, “I preŠtty much devoted my time to [my bootcamp’s] prescribed job hunting methods, which means €financially, I have no money. [. . . ] And that [sacrifice] reflects on my family because now we’re low on funds [. . . ] and now instead of selling our house and buying a house, we’re selling our house to pay the debt that we’re in and then go rent until I can €find a job.”

Kyle’s visualization of the paths of his 26 interviewees is rich with detail, but can be confusing.  Here’s a slice of three of them.

What I didn’t get at first is that the gray area to the right is planned (or even imagined).  So P18, above, has already had one partial bootcamp (half-moon), one complete bootcamp, and still doesn’t have the desired job (the star in the upper right hand corner).  Of his 26 interviewees, only three have their desired job in the software industry.  Several have less than desirable jobs (including one that has an unrelated job and gave up). Nine of the 26 had already dropped out of a bootcamp.

When I read Kyle and Andy’s study about the struggle and pain that the bootcamp attendees go through, including difficulties finding jobs beyond what was expected, and then read Audrey’s piece suggesting that there might not be as many jobs available as people think, I wonder what is the allure of bootcamps.  Why go through all of that when there isn’t a guaranteed (or even likely?) payoff?

Within the past week, two well-known and well-established coding bootcamps have announced they’ll be closing their doors: Dev Bootcamp, owned by Kaplan Inc., and The Iron Yard, owned by the Apollo Education Group (parent company of the University of Phoenix). Two closures might not make a trend… yet. But some industry observers have suggested we might see more “consolidation” in the coming months.

It appears that there are simply more coding bootcamps – almost 100 across the US and Canada – than there are students looking to learn to code. (That is to say, there are more coding bootcamps than there are people looking to pay, on average, $11,000 for 12 weeks of intensive training in a programming language or framework).

All this runs counter, of course, to the pervasive belief in a “skills gap” – that there aren’t enough qualified programmers to fill all the programming jobs out there, and that as such, folks looking for work should jump at the chance to pay for tuition at a bootcamp. Code.org and other industry groups have suggested that there are currently some 500,000 unfilled computing jobs, for example. But that number is more invention than reality, a statistic used to further a particular narrative about the failure of schools to offer adequate technical training. That 500,000 figure, incidentally, comes from a Bureau of Labor Statistics projection about the number of computing and IT jobs that will added to the US economy by 2024, not the number of jobs that are available – filled or unfilled – today.

Perhaps instead of “everyone should learn to code,” we should push for everyone to learn how to read the BLS jobs report.

There isn’t really much evidence of a “skills gap” – there’s been no substantive growth in wages, for example, that one would expect if there was a shortage in the supply of qualified workers.

Source: Why Are Coding Bootcamps Going Out of Business?


Tagged: bootcamps, coding for all, coding for everyone, jobs

Google report in CACM: Is the U.S. Education System Ready for CS for All?

Fri, 08/25/2017 - 07:00

Jennifer Wang of Google has the Education Viewpoints column in CACM this month, and she reports on data that Google is collecting on systemic issues preventing CS for All.  It’s an important report that I recommend.

Interestingly, we also found that regardless of race/ethnicity or gender, 80% of students who have learned CS said that they learned CS in a class at school, about twice the rate of any other means of learning, including on their own, through afterschool clubs, online, or in any other program outside of school. This data strongly suggests formal education remains the best way to ensure widespread and equitable access to CS learning.

Yet, we found schools faced many barriers to offering CS classes. We asked principals and superintendents why they did not offer CS in their schools and districts. The most commonly cited barriers had to do with lack of qualified teachers and competing demands of standardized test preparation. Lack of qualified teachers was cited by 63% of principals and 74% of superintendents. Not enough funding to train teachers was cited by 55% of principals and 57% of superintendents. The need to devote time to testing requirements was cited by 50% of principals and 55% of superintendents. This indicates computing professionals can play an important role in expanding access to CS by supporting organizations that train teachers and by providing mentoring and resources to teachers and students.

Source: Is the U.S. Education System Ready for CS for All? | August 2017 | Communications of the ACM


Tagged: computing education, computing for all, computing for everyone, CS for all, Google

A Threads-using CS major joins GT Faculty: Welcome to Sauvik Das

Mon, 08/21/2017 - 07:00

Threads were a curriculum innovation from Georgia Tech around 2005, that we have studied in some of our research.  Today, we welcome one of the undergraduates who took Threads as faculty into our School of Interactive Computing.  (He officially starts in January, but he’s hanging out at the faculty retreat and meetings with us.) Welcome to Sauvik Das, and I’m so pleased that he wrote this reflective essay about his journey to re-join us.

Threads are specializations in different application areas of Computer Science: for example, embedded systems (e.g., computing embedded in physical systems), media (e.g., computer graphics, games), machine intelligence, etc. The thread that truly made me think was “people”: “where computing meets its users”. Everything I wanted to do with computing, I reflected, was not actually about computing. It was about using computing to create new, better and engaging experiences for the people that used the systems I made.

Source: Beginnings: Old and New – Sauvik Das – Medium


Tagged: Threads, undergraduate education

Teachers are not the same as students, and the role of tracing: ICER 2017 Preview

Fri, 08/18/2017 - 07:00

The International Computing Education Research conference starts today at the University of Washington in Tacoma. You can find the conference schedule here, and all the proceedings in the ACM Digital Library here. In past years, all the papers have been free for the first couple weeks after the conference, so grab them while they are outside the paywall.

Yesterday was the Doctoral Consortium, which had a significant Georgia Tech presence. My colleague Betsy DiSalvo was one of the discussants. Two of my PhD students were participants:

We have two research papers being presented at ICER this year. Miranda Parker and Kantwon Rogers will be presenting Students and Teachers Use An Online AP CS Principles EBook Differently: Teacher Behavior Consistent with Expert Learners (see paper here) which is from Miranda C. Parker, Kantwon Rogers, Barbara J. Ericson, and me. Miranda and Kantwon studied the ebooks that we've been creating for AP CSP teachers and students (see links here). They're asking a big question: "Can we develop one set of material for both high school teachers and students, or do they need different kinds of materials?" First, they showed that there was statistically significantly different behaviors between teachers and students (e.g. different number of interactions with different types of activities). Then, they tried to explain why there were differences.

We develop a model of teachers as expert learners (e.g., they know more knowledge so they can create more linkages, they know how to learn, they know better how to monitor their learning) and high school students as more novice learners. They dig into the log file data to find evidence consistent with that explanation. For example, students repeatedly try to solve Parsons problems long after they are likely to get it right and learn from it, while teachers move along when they get stuck. Students are more likely to run code and then run it again (with no edits in between) than teachers. At the end of the paper, they offer design suggestions based on this model for how we might develop learning materials designed explicitly for teachers vs. students.

Katie Cunningham will be presenting Using Tracing and Sketching to Solve Programming Problems: Replicating and Extending an Analysis of What Students Draw (see paper here) which is from Kathryn Cunningham, Sarah Blanchard, Barbara Ericson, and me. The big question here is: "Of what use is paper-and-pen based sketching/tracing for CS students?" Several years ago, the Leeds' Working Group (at ITiCSE 2004) did a multi-national study of how students solved complicated problems with iteration, and they collected the students' scrap paper. (You can find a copy of the paper here.) They found (not surprisingly) that students who traced code were far more likely to get the problems right. Barb was doing an experiment for her study of Parsons Problems, and gave scrap paper to students, which Katie and Sarah analyzed.

First, they replicate the Leeds' Working Group study. Those who trace do better on problems where they have to predict the behavior of the code. Already, it's a good result. But then, Katie and Sarah go further. For example, they find it's not always true. If a problem is pretty easy, those who trace are actually more likely to get it wrong, so the correlation goes the other way. And those who start to trace but then give up are even more likely to get it wrong than those who never traced at all.

They also start to ask a tantalizing question: Where did these tracing methods come from? A method is only useful if it gets used — what leads to use? Katie interviewed the two teachers of the class (each taught about half of the 100+ students in the study). Both teachers did tracing in class. Teacher A's method gets used by some students. Teacher B's method gets used by no students! Instead, some students use the method taught by the head Teaching Assistant. Why do some students pick up a tracing method, and why do they adopt the one that they do? Because it's easier to remember? Because it's more likely to lead to a right answer? Because they trust the person who taught it? More to explore on that one.


Tagged: computing education research, ebooks, ICER, spatial reasoning, tracing

Teaching Computer Science Is Great, But It’s Not Enough: Calls for Functional Computer Science Literacy

Mon, 08/14/2017 - 07:00

The article quoted below by Florence R. Sullivan & Jill Denner calls for us to go beyond “simply giving more students access.” We need to give them “functional computer science literacy.”  By that phrase, they mean that we need to have students consider ethical and social issues.  That’s not what Andy DiSessa meant when he defined computational literacy, who talked more about using computing to understand the world.  But there may be a more mundane, critical form of literacy than either of these definitions.

Computing classes that emphasize coding over traditional technology literacy (e.g., how to use the computer) are not attracting students in the UK.  The BBC said it frankly, “Computing in schools – alarm bells over England’s classes.” In the UK, even where there is access to computing education, but students aren’t flocking to the classes.  It’s not just a matter of “time, funding, and qualified teachers.” Traditional Information and Communications Technologies classes are more attractive to English students than Computing classes, based on number of students taking GCSE’s.

Massachusetts merged their digital literacy standards into their new computer science standards.  That’s likely going to be the most successful path. We can use digital literacy as a context to introduce some CS, to draw students into CS classes. CS may not be the draw. Literacy is.

There is still much work to do, however. In an ongoing, multiyear study on computer science education conducted by Google and Gallup, researchers found that although students, parents, teachers, and school administrators value computer science, it is still not offered in many schools. This is because of a lack of time, funding, and qualified teachers. Only 25 percent of schools nationwide reported offering a computer science class in 2014-15, and while that number rose to 40 percent in 2015-16, we are still years away from providing sufficient computer science education in all schools.

As educational researchers focused on computer science learning, we welcome the push by more districts to teach the discipline to students. But we believe that our nation’s current conception of computer science education does not go far enough. It is not sufficient to simply give more students access. As computer science continues to expand, we advocate for educators to teach functional computer science literacy, just as the field of science education has spent decades refining an approach to teaching socio-scientific reasoning (which integrates learning science content in the context of real-world issues).

Source: Education Week


Tagged: computational literacy, computing at school, computing literacy

Leslie Lamport tells Computer Scientists to go create ebooks (and other new media)

Fri, 08/11/2017 - 07:00

Yes! Exactly!  That’s why we’re trying to figure out new media for expressing, learning, and talking about computing.

“If you succeed in attaining a position that allows you to do something great, if you do something that really is great, and if you realize that it’s great, there’s still one more hurdle: You have to convince others that it’s great,” he told the graduates. “This will require writing.”

He exhorted graduates in biological physics; chemistry; computational linguistics; computer science; language and linguistics; mathematics and physics to find new modes of communication.

“There must be wonderful ways in which a writer can interact with the reader that no one has thought of yet, ways that will convey ideas better and will make reading fun,” Lamport said. “I want you to go out and invent them.”

Source: Computer scientist Leslie Lamport to grads: If you can’t write, it won’t compute | BrandeisNOW


Tagged: computational media, computing education, ebooks, media, teachers

It’s not about Google. Our diversity efforts aren’t working

Wed, 08/09/2017 - 07:00

The sexist “internal memo” from Google has been filling my social media feeds for the last few days. I’m not that excited about it.  Within every organization, there will be some people who disagree with just about any policy.  The enormous screed is so scientifically incorrect that I have a hard time taking it seriously.  

For example, the memo claims that the gap between men and women in CS is due to biology. That can’t be when there are more women than men in CS, especially in the Middle East and Northern Africa.  I saw a great study at NCWIT a few years ago on why programming is seen as women’s work in those parts of the world — it’s detailed work, done inside, sometimes with one other person. It looks like sewing or knitting. When told that programmers were mostly male in the US, the participants reportedly asked, “What’s masculine about programming?”  There’s an interesting take from four scientists who claim that everything that the internal memo says is correct.

The positive outcome from this memo is Ian Bogost’s terrific essay about the lack of diversity in Tech, from industry to higher education. It’s not about Google. It’s that our diversity efforts are having little impact. Ian explains how our problem with diversity is deeply rooted and influences the historical directions of computing. I highly recommend it to you.

These figures track computing talent more broadly, even at the highest levels. According to data from the Integrated Postsecondary Education Data System, for example, less than 3 percent of the doctoral graduates from the top-10 ranked computer science programs came from African American, Hispanic, Native American, and Pacific Islander communities during the decade ending in 2015.

Given these abysmal figures, the idea that diversity at Google (or most other tech firms) is even modestly encroaching on computing’s incumbents is laughable. To object to Google’s diversity efforts is to ignore that they are already feeble to begin with.

Source: A Googler’s Anti-Diversity Screed Reveals Tech’s Rotten Core – The Atlantic


Tagged: BPC, computing for all, computing for everyone, Google, NCWIT

IEEE Prism on the Georgia Tech Online MS in CS Program

Mon, 08/07/2017 - 07:00

Nice piece in IEEE Prism about Georgia Tech’s On-line (Udacity MOOC-based) MS in CS degree.  I like how they emphasized that the program really discovered an un-met demand for graduate education.

Only after students began enrolling in OMS CS did researchers discover another unprecedented element of this massive online course. As economist Joshua Goodman of Harvard University tells Prism, he and his co-investigators found “large demand among mid-career [professionals], particularly mid-career Americans . . . for high-quality continuing education.” Indeed, demand is so robust that the program appears capable of boosting the overall production of computer science degrees in this country.Whether the new credential can fortify experienced professionals against the widespread threat of replacement by younger and cheaper workers remains an open question. For the thousands who have enrolled so far, however, the answer clearly is yes.

Source: Course Correction


Tagged: MOOCs, OMSCS, on-line education

Michigan is phasing out its computer science teaching endorsement

Fri, 08/04/2017 - 07:00

I’d heard that this was happening, but couldn’t believe it, until I saw the news reports.  While other states are ramping up computer science teacher certifications or endorsements, and schools are starting to offer programs for those certifications, Michigan is actually phasing it out.

Teachers who currently hold the endorsements will continue to see them displayed on their certificates and may continue to teach in those areas. However, starting in 2017-18, administrators will have discretion in assigning a teacher in those endorsement areas. For example, a teacher with a computer science endorsement may be assigned to teach computer science, or a district may employ a teacher without the endorsement who displays strong computer science skills.

Source: Some Teaching Endorsements Phasing Out – Michigan Education Association


Tagged: computing education, public policy, teachers

The factors influencing students choosing to go into STEM: Economics and gender matter

Mon, 07/31/2017 - 07:00

I saw this in a College Board report, which summarized the paper cited below with these bullets:

  • For both genders, academics played a large part in major choice—passing grades in calculus, quantitative test scores, and years of mathematics in high school were notable.
  • Also important to both young men and women was a student’s own view of his or her quantitative/mathematical abilities.
  • Key drivers in decision making differed between genders. First-generation status correlated with young men being more likely to major in engineering, while a low-income background was associated with young women majoring in scientific fields.

Based on the findings presented here, first generation status leads to a greater likelihood of choosing engineering careers for males but not for females. Financial difficulties have a greater effect on selecting scientific fields than engineering fields by females. The opposite is true for males. Passing grades in calculus, quantitative test scores, and years of mathematics in high school as well as self-ratings of abilities to analyze quantitative problems and to use computing are positively associated with choice of engineering fields.

Source: Choice of Academic Major at a Public Research University: The Role of Gender and Self-Efficacy | SpringerLink


Tagged: BPC, NCWIT, women in computing

A Weak Argument that Silicon Valley is Pushing Coding Into American Classrooms through Code.org

Fri, 07/28/2017 - 07:00

When the New York Times does an article on Code.org, it’s worth noting.  I had my class on Computing and Society read the essay and critique it, and they were dubious.  They have a bias — they’re all Georgia Tech students in STEM, and almost all majoring in Computer Science.  They tend to think learning to code is a good thing.  Still, they were concerned about the article, with good reason.  They wondered, “Where exactly is Code.org doing something wrong?”

I had similar concerns. I read the quote from Jane Margolis (“It gets very problematic when industry is deciding the content and direction of public education”) and thought, “Jane didn’t just say that.  She would have explained what she meant by ‘problematic.'”  It felt to me like the quote was taken out of context.

Is Code.org really “deciding” what goes into public education?  Or are they simply influencing those who do decide?  Maybe Silicon Valley is having undue influence. This article didn’t really make the case.

Code.org’s multilevel influence machine also raises the question of whether Silicon Valley is swaying public schools to serve its own interests — in this case, its need for software engineers — with little scrutiny. “If I were a state legislator, I would certainly be wondering about motives,” said Sarah Reckhow, an assistant professor of political science at Michigan State University. “You want to see public investment in a skill set that is the skill set you need for your business?”Mr. Partovi, 44, said he simply wanted to give students the opportunity to develop the same skills that helped him and his backers succeed. He immigrated as a child to the United States from Iran with his family, went on to study computer science at Harvard, and later sold a voice-recognition start-up he had co-founded to Microsoft for a reported $800 million.

“That dream is much less accessible if you are in one of America’s schools where they don’t even tell you you could go into that field,” Mr. Partovi said.

Even so, he acknowledged some industry self-interest. “If you are running a tech company,” he said, “it’s extremely hard to hire and retain engineers.”


Tagged: Code.org, public policy

Helping students succeed in AP CS: GT Computing Undergraduate Female Rising Up to Challenge in CS

Wed, 07/26/2017 - 09:00

There’s a common refrain heard at “CS for All” and BPC events in the US these days. “AP CS A is just terrible. AP CS Principles will fix everything.” The reality is that there are bad AP CS A classes, and there are good ones. There is evidence that just having good curricula doesn’t get you more and more diverse students. The more important reality is that AP CS A accurately matches most introductory computer science classes in the United States. If you want students to succeed at the CS classes that are in our Universities today, AP CS A is the game to play at high school.

That’s why Barbara’s Rise Up programs are so important. She’s helping female and African-American students succeed in the CS that’s in their schools and on University campuses today. And she’s having tremendous success, as seen in the story below about a female high school football player who is now a CS undergraduate.

Barbara’s work is smart, because she’s working with the existing CS infrastructure and curricula. She’s helping students to succeed at this game, through a process of tutoring and near-peer mentoring. This is a strategy to get more female CS undergraduates.

That’s when she discovered Sisters Rise Up 4 CS, a relatively new program developed in Fall 2014 at Georgia Tech by Barbara Ericson. The program was based on Project Rise Up 4 CS, which aims to help African-American students pass the AP Computer Science A exam. Sisters Rise Up does the same for females.The program offers extra help sessions in the form of webinars and in-person help sessions, near-peer role models, exposure to a college campus, and a community of learners.“The program helped me get hooked on computer science,” Seibel said. “I started to actually learn. Seeing that some of the girls in the program had interned at Google or other places like that, and that they really loved CS, it gets you excited about it. They were only a few years older than me, and I was like, ‘Oh. That could be me.’”

Source: GT Computing Undergraduate Sabrina Seibel Rising Up to Challenge in CS | College of Computing


Tagged: AP CS, AP CSP, BPC, computing for all, computing for everyone, women in computing